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Short-Time Kinetic Equations 
for Hard Spheres: 
Comparison with Other Theories 
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The short-time ~ kinetic equation for hard spheres derived by Lebowitz, 
Percus, and Sykes is compared with the Enskog equation. It is shown that, 
to leading order in the density, the short-time equation and the Enskog 
equation are identical and equivalent to the memory function equation used 
by Mazenko, Wei, and Yip. By using simple properties of the collision 
integrals, the scattering function calculated from the short-time equation 
can be related to the scattering function obtained from the Enskog equation: 
This relationship is exact for all values of the density. We examine the 
relationship in the short-time limit and in the hydrodynamic limit and argue 
that the short-time kinetic equation gives a better description of the scattering 
function than does the Enskog equation. 
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1. I N T R O D U C T I O N  

The van Hove  (1) t ime-dependen t  se l f -dis t r ibut ion and to ta l  d i s t r ibu t ion  
funct ions G~(r, t) and  G(r, t) p l ay  a centra l  role  in the theories o f  l iquids and  
gases. The Fou r i e r  t r ans fo rms  o f  these funct ions  Ss(k, ~o) and S(k,  ~o) can be 
measured  for  different fluids by  neu t ron  scat ter ing exper iments  and  cal- 
cu la ted  direct ly  for  different in terac t ion  potent ia ls  by  molecu la r  dynamics .  
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Thus, there is an ever-growing body of data which needs to be understood 
and which at the same time can be used to test existing theories. The theories 
are usually based on either the solution of a kinetic equation such as the 
Boltzmann equation, which is the method pioneered by Nelkin and co- 
workers, (2) or the calculation of memory functions, which were introduced 
by Zwanzig (~) and Mori. (4) Although these methods and approximations are 
in many cases very different, they often lead to similar results. (5~ Instead of 
comparing each theory with either the experimental data or machine 
computations, much effort can be saved by first comparing the theories and 
then using the best available theory to compare with the data. 

In this paper, we compare the short-time kinetic equations derived by 
Lebowitz, e t  al. (6) with other theories. These equations, which, as their name 
implies, are exact at short times, are summarized in Section 2. The equations 
are different for the self-distribution and total distribution functions and for 
continuous and discontinuous potentials. The equation for the self-distri- 
bution function for continuous potentials has already been compared with 
molecular dynamics calculations by Levesque and Verlet, (~) so here we will 
concentrate our attention on the equations for hard spheres. The kinetic 
equation traditionally used to describe hard-sphere systems is the Enskog 
equation, (s) which is a modification of the Boltzmann equation. The 
limitations of the Enskog equation have recently been discussed by Gross and 
Wisnivesky (9) and an approximate form of it has been solved numerically 
by Ranganathan and Nelkin. (1~ In Section 3, we show that the Enskog 
equation can be written in the same form as the short-time kinetic equation, 
that is, as a driving term with a Vlasov-type term and a collision integral, 
the only difference being in the effective potentials in the Vlasov terms. To 
leading order in the density p, the effective potentials are identical and further- 
more when the collision integral is also evaluated to leading order in p, the 
resulting equation is equivalent to the memory function equation used by 
Mazenko e t  al. m )  

The scattering functions S(k, m) are discussed in Section 4. By using 
simple properties of the collision integral, the scattering function calculated 
from the short-time kinetic equation can be related to the scattering function 
obtained from the Enskog equation. This relationship is exact for all O and 
only involves the effective potentials so that if one of the scattering functions 
is known, the other can be calculated directly from it. We examine this 
relationship in the short-time limit, which leads to expressions for the sum 
rules of S(k, co), and in the hydrodynamic limit. A similar relationship is 
derived relating the scattering function obtained from the short-time equation 
to the one calculated by Mazenko e t  al. in the low-density limit. From these 
results, we argue that the short-time kinetic equation gives the best description 
of the scattering function. 
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2. S H O R T - T I H E  K I N E T I C  E Q U A T I O N S  

We consider a classical system of N particles in a box at density p. At 
t = 0, one particle has a normalized distribution function W(r, v) and the 
rest of the particles are in equilibrium. The total one-particle distribution 
function is defined by 

f ( r l , v l ,  t ) =  N f  dr2 f dr2 " " f  drN f dvN/~(rl,vl .... , rN,  VN; t) (1) 

Here, /x is a symmetrized ensemble density which is the solution of the 
Liouville equation with the initial condition 

N V/(r~, Vl) 
/~(rl, vl . . . . .  r N ,  V N ; 0 )  = [L0(rl , V 1 . . . . ,  r N ,  VN) ).~ (2) 

where/*o is the canonical distribution function and fo(r, v) = pho(v ) is the 
one-particle equilibrium distribution function. We are interested in the 
departure of f ( r ,  v, t) from its equilibrium value, which is given by 

~(r, , ,  t) ~ f(r, v, t) - pho(~) f dro f dVo W(ro, "o) 

= f dro f dvo~7(r,v,t/ro,Vo)W(ro, Vo) 
(3) 

The last equation can be used to define a conditional distribution function 
since ~?(r, v, t) is a linear functional of W(ro, Vo). At t = 0, we have 

~(r, ,,, O) = f dro faYo (~(r --  ro) ~(v -- gO) 

+ pho(v)[g(r, ro) -- 1]} W(ro, Vo) (4) 

where g(r, r0)~-g(I r -  r o i) is the radial distribution function. For the 
particular choice 

w(r, Y) = ~(0 h0(~), J ( dr f dY ~(r, ~) = 1 (5) 

and the van Hove total distribution function is given by 

a(r, t) = f dv r/(r, v, t) 
d 

(6) 

Similar definitions can be made for the self-distribution function f~(r, v, t) 
from which G~(r, t) can be calculated. The results will be summarized below 
and the reader is referred to Ref. 6 for further details. 
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The method used to derive the short-time kinetic equations in Ref. 6 
can be described very simply. We define an operator O(t) such that 

71(t ) = O(t) ~/(0) (7) 

Then the time derivative of ~(t) can be written as 

~(t) = O(t) 7(0)  = O(t) o-1(0 ~(t) (8) 

The first-order equations are obtained by evaluating O(t)O-~(t) at t = 0. 
Second-order equations can also be derived but the details will not be 
repeated here. 

The short-time kinetic equations for the Fourier-Laplace transform 
f~(k, v, s) of the self-distribution function f~(r, v, t) are of the form (~ 

(s -- i k .  v)f~(k, v, s) = f~(k, v, 0) q- se~(k, s) I~(j~(k, v, s)) (9) 

where the coefficients ~(k, s) and the collision integrals I~ are given in Table I. 
The first-order equation for continuous potentials leads to the ideal gas 
equation. The second-order equation gives the Fokker-Planck equation 
with a frequency-dependent friction coefficient which can be related to the 
velocity autocorrelation function. 16) This equation has been compared with 
machine calculations by Levesque and Verlet. (7) For hard spheres we obtain a 
linearized Boltzmann equation with a factor g(a), which is the radial distri- 
bution function for a system of hard spheres of diameter a at contact. 

The equations for the Fourier-Laplace transform ~(k, v, s) of the total 
distribution can be written as <6) 

(s -- i k "  v) ~(k, v, s) = ~/(k, v, O) q- iho(v) v"  Q(k, s) 

+ O,,  s) ;(~(k, v, s)) (lO) 

where Q(k, s) is a Vlasov-type term. The functions Q(k, s) and ~:(k, s) and the 
collision integral I are given in Table II. The equation from the first line of 
Table II is the Vlasov equation with an effective potential --~C(r), where C(r) 

Table I. Self-Distribution Function 

~Oc, s) I. 

Continuous potential 
First order 
Second order 

Hard spheres: first order 

- -  0 

~-A~s(s) Fokker-Planck 

pg(a) Linearized Boltzmann 
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Tab le  I I .  Total Distribution Function 

(~(k, s) se(k, s) 
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Continuous potential 
First order --kpC(k)~(k, s) -- 

Second order --kpC(k)~(k, s) kAY(s) 
+ iA(k ,  s) " ]'(k, s)  

Hard spheres: first order --ko[C(k) -- g(a)Co(k)]g(k, s) 

0 

Fokker-Planck 

pg(a) Linearized Enskog 

is the direct correlation function. This equation has been derived many times by 
many methods. (12) The next equation has a Vlasov term which depends on 
the density ~(k, s) = ~ dv ~(k, v, s) and the current i(k, s) = f dv v~(k, v, s). 
In Ref. 6, the tensor A had the form 

A(k, s) = @(s) { A ( k ) ( k k / k  2) + B(k)[I -- (kk/k2)]} (11) 

where A and B were determined by sum rules and ~(s) was unspecified apart 
from requiring ~(s) = 1/s + .. .  as s -+ or. A similar equation was derived 
by Akcasu and DuderstadV TM using a memory function approach, the only 
difference being that ~(s) was replaced by 1/[s + a(k)]. The last equation 
of Table II is the short-time kinetic equation for hard spheres and this will 
be discussed in detail in the rest of the paper. 

3. C O M P A R I S O N  OF T H E O R I E S  FOR H A R D  SPHERES 

The short-time kinetic equation for the total distribution function for a 
system of hard spheres is Eq. (10) with the coefficients 0(k, s) and ~(k, s) 
given in the last line of Table II. Co(k) is the direct correlation function at 
zero density, that is, 

Co(k) = - -  (4~ra2/k) ja(ka)  (12) 

where Jl is a Bessel function. The collision integral I is cG~ 

l@(k, v, s)) ~ f dvo ~(k,  s I v, %) #(k, vo, s) 

~} 

x (ho(V;)  ~(k, v? ,  s )  - -  ho(V~) #(k, vl, s) 

+ ho(va ' ) [exp ( - - iak .  ~)] ~(k, %', s) 

- -  ho (v l ) [exp( iak .  ~t)] ~(k, v2, s)} (13) 
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where 

v /  -- v~ + ~[(v2 -- v~). ~], and v2' ----- v2 --  ~[(v2 -- vz). ~] (14) 

It is convenient for reasons which will become apparent in Section 4 to 
introduce a new collision operator B which is defined by 

f dv0 B(k, s [ v, v0) ~(k, Vo, s) 

v .  kCo(k) f dvo ~(k, vo, s) iho(v) 

+ f dvo M(k, s [ v, %) ~(k, vo, s) (15) 

Then the kinetic equation can be written as 

(s -- i k .  v) ~(k, v, s) = n(k, v, 0) 

--  iho(v) v . kp V(k) ~(k, s) 

+ ~(k) f dv o B(k, s I v, vo) ~(k, vo, s) (16) 

where 

V(k) = C(k); ~(k) = pg(a) (17) 

3.1. The Enskog Equation 

We now show that  the Enskog equation also leads to Eq. (16) but with 
a different effective potential V(k). 

T h e  Enskog equation is ~8~ 

~Tf ( r  ' 8 r Vl, t) + Vz" ~-~f( , v l ,  t) = I~(r, Vl, t) (18) 

where 

• [x(r + �89 vl', t ) f ( r  + a~, v(,  t) 

--  x(r -- �89 vz, t ) f ( r  -- a~, v2, t)] 

Here, vl' and v ' are given in Eq. (14) and 

~(x) = 0 for x ~ 0  
= 1  for 0 ~ x  

(19) 
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We now put 

f ( r ,  v, t) = pho(v) + n(r, v, t) 

and keep only those terms which are linear in the displacement from equi- 
librium :?(r, v, t). For the function X(r), we follow the method of Gross and 
Wisnivesky (9) and take it to be the radial distribution function at contact 
at the density 

p(r, t) = f dvf(r,  v, t) = p § f dv ~(r, v, t) (20) 

Then 
? 

x(r) = g(a)l.=p(r.t) = g(a) + [dg(a)l&] J dv n(r, v, t)  § 0 ( ~  2) (21) 

where g(a)  is at the equilibrium density p. The linearized equation is 

e-7 ~/(r, v~, t) § vl" ~r ~7(r' vl ,  t) 

= p2a~ dg(a) 

f dv [~/(r § �89 v, t )  - -  ~(r -- �89 v, t)] x ho(v2) 

+ pang(a) f f -- v1). -- vl)" 

X [ho(v~') ~(r, vl', t) + ho(vl') ~7(r + a~, v2', t) 

- -  ho(v~) ~/(r, Va, t )  - -  ho(v~) ~7(r - -  a~, v2,  t)] (22) 

The Fourier-Laplace transform of this equation is the same as Eq. (16) with 
the effective potential 

V(k)  -~ p[dg(a)/dp] �89 § g(a) Co(k ) (23) 

The equation of state for a system of hard spheres is ~4) 

/3p = p[1 q- ~Tra3pg(a)] (24) 

and g(a)  is independent of the temperature T = 1/kfi. Furthermore, the 
direct correlation function at k =- 0 is given by 

1 - -  pC(O) = (e/ep)(pp)lT (25) 

so that 
C(O) = --~Tra3g(a) - -  ~Tra3pdg(a)/dp (26) 

822/8/3-5 
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The last equation can be used to eliminate dg(a)/dp from Eq. (23). The final 
results for the linearized Enskog equation are 

V(k) = [C(0) -- g(a) Co(O)][Co(k/2)/Co(O)] Jr g(a) Co(k) (27) 

and 

f (k)  = pg(a) (28) 

3.2. The Memory Function Equation of Mazenko, Wei, and Yip 

Mazenko aS~ has used a thermodynamic Green's function method to 
calculate in the low-density limit the memory function q~ associated with the 
correlation function 

S(r -- r', p, p', t -- t') 

= ([f(r ,  p, t) -- ( f ( r ,  p, t))][f(r ' ,  p', t') -- ( f ( r ,  p', t '))]) (29) 

where 
N 

f(r ,  p, t) = ~ 8(r -- rj(t)) 8(p -- p~(t)) (30) 
j = l  

In the notation of this paper, S can be written as 

S(r -- r', my, mv', t) = (1/rn 6) ~/(r, v, t/r', v') pho(v') (31) 

where the conditional distribution ~7 is given by Eq. (3). By multiplying 
Mazenko's equation for S by m~W(r ', v')/pho(v' ) and integrating over r' 
and v', it can be written as a kinetic equation for ~7(r, v, t). 

Recently, Mazenko et aL mJ have evaluated the memory function ~ for 
a classical system of hard spheres, calculated the scattering function S(k, co), 
and compared the results with the linearized Boltzmann equation. The 
scattering function will be discussed in Section 4; here, we will show that the 
equation of Mazenko et al. is also equivalent to Eq. (16). 

The Fourier-Laplace transform of the memory function ml q~(k, p, p', is) 
is independent of s and has three parts denoted by ~ ( k ,  p), ~ ( k ,  p, p'), 
and ~C~(k, p, p'), each part giving a contribution to the kinetic equation for 
~(k, v, s). From ~l~l(k, p), we get the term 

--iho(v) v " kpC(k) ~7(k, s) (32) 

Since the memory function is only valid to leading order in the density, 
Mazenko et al. replace C(k) by its zero density limit, that is, Co(k). The term 
q~(k ,  p, p') gives a collision integral which is similar to 

f dr0 ~(k,  s I v, v0) ~(k, v0, s) 
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Table II!. Coefficients for the Kinetic Equation (16) 

v(~) ~(~) 

287 

Enskog equation [C(0) -- g(a)Cc(O)][Co(k/2)/Co(O)l + g(a)Co(k) pg(a) 

Short-time Equation C(k) pg(a) 

Mazenko et al. ~111 Co(k) p 

but differs from it by a change of sign in one of the exponential factors 
exp(iak. ~). When the contribution from 6[C)(k, p, p') is written as the 
operator ~ with two correction terms, one of the correction terms exactly 
cancels the contribution from 6~C~(k, p, p') and the combination 6[e) + q~c~ 
leads to 

p f dvo BC K, s I v, Vo) ~(k, Vo, s) (33) 

The resulting kinetic equation is Eq. (16) with 

V(k) = C0(k); ~(k) = p (34) 

The results of the three different theories are summarized in Table III. 
In the limit p--~ O, C(k)--+ Co(k) and g ( a ) ~  1. The Enskog and 

short-time equations are then identical and furthermore equivalent to the 
equation of Mazenko et al. (The latter authors ~11) also derive an equation for 
the self-distribution function which is the same as the third line of Table I 
when g(a) is replaced by 1.) In the limit k ~ O, C(k) = C(O) + O(k 2) and 
the Enskog and short-time effective potentials are again identical to order kL 

4. T H E  S C A T T E R I N G  F U N C T I O N  

The Fourier-Laplace transform 2(k, s) of the van Hove function G(r, t) 
is given by 

f dr "0(k, v, s) (35) 2(k, s) 

where ~/(k, v, s) is the solution of a kinetic equation, Eq. (16) in this paper, 
with the initial condition 

and 

-q(k, v, 0) : S(k) ho(v) (36) 

S(k) = 1/[1 -- pC(k)] (37) 
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The coherent scattering function S(k, to) is then defined by 

S(k, to) = (1/70 Re 2(k, ito) 

Although the kinetic equations for hard spheres discussed in Section 3 
cannot be solved analytically, we can obtain some information about 2(k, s) 
by using the methods of Ref. 6, Section VII. In writing the kinetic equation 
(16), we have chosen the collision integral B so that 

f dv B(k, s I v, v') = 0 (38) 

and 

B(k, s I v, v') ho(v') = B(k, s I v', v) ho(v) (39) 

If  we now introduce a Green's function Go which is the solution of the 
equation 

(s -- i k .  v) Go(k, s I v, v') -- a(v - v') (40) 

+ ~(k) f dw B(k, s [ v, w) G0(k, s i w, i[ I ) 

then from (38) and (39), Go satisfies the conditions 

and 

ik"  f dv vGo(k, s [ v, v') = s f dv Go(k, s l v, v') -- 1 (41) 

Go(k, s [ v, v') ho(v') = G0(k, s [ v', v) ho(v) (42) 

These are just the conditions for the method of Ref. 6 to apply, so we quote 
the final result 

where 

[1 -- pV(k)] ~(k, s) 
1 - -  sp V(k)  O(k, s)  

= f dv f dv' Go(k, s I v, v ' )  ho(v') 

r s I s~(k)) (43) 

6(k, s) = 2(k, s)/S(k) (44) 

The right side of Eq. (43) is obtained from the solution of Eq. (40) and so 
only depends on se(k) and not on V(k). By making appropriate choices for 
V(k) and ~e(k), we can use the above equations to relate the scattering function 
derived from the short-time equation with those from the Enskog and memory 
function equations. 
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4.1. Short-Time and Enskog Results 

For the short-time equation, we have 

[1 --  pC(k)] cT(k, s) = ~(k, s E og(a)) (45) 
1 --  spC(k) 6(k, s) 

and for the Enskog equation 

[1 --  ore(k)] ~e(k, s) = ~(k, s pg(a)) (46) 
1 - so Ve(k)  ~ d k ,  s)  

Here, functions without subscripts refer to the short-time expressions and 
functions with subscripts E refer to the Enskog expressions: Ve(k) is given 
in the first line of Table III. Since the right sides of (45) and (46) are identical, 
we find 

[1 - pVe(k) l  ~e(k, s) (47) 
cT(k, s) = 1 -- pC(k) + sp[C(k) - -  Ve(k)l Oe(k, s) 

Thus, if the scattering function is known for the Enskog equation, then it 
can be calculated for the short-time equation and vice versa. Neither of 
these functions has in fact been calculated but we can obtain some interesting 
resuks by examining the short-time and hydrodynamic limits. 

In the short-time limit, that is, for large values of s, 

~T XJ(/c) (48) 2(k, s) = 7 
j=O 

where xj(k) denotes the j th  sum rule 

dJx(k, t) e=o + (49) 
Xj(k) - -  cltJ 

In particular, 

and we expect 

xo(k) = S ( k )  

x # )  = o 

If  we use a similar expression for the Enskog function 2e(k, s) with sum rules 
Xje(k), then from (47), we find 

xo(k)  = Xoe(k) = S ( k )  

Xl(k)  = Xle(k)  = 0 (50)  

x # )  = {[1 - pC(k)]/[1 - -  o V ~ ( k ) ] }  x ~ ( k )  

x~(k) = { [1  - -  p C ( k ) ] / O  - -  p V ~ ( k ) ] }  W ~ ( k )  
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etc. We know from previous work that the first four sum rules ( j  = 0, 1, 2, 3) 
for the short-time equation are exact, (6~ whereas only the first two ( j  = 0, 1) 
are exact when the Enskog equation is used. (9) These results are consistent 
with (50). Furthermore, we can see that in the limit p -+ 0 and in the limit 
k --~ 0, the third and fourth Enskog sum rules become exact. 

In the hydrodynamic limit, we expect the intermediate scattering 
function x(k, t) to be given by (161 

a(k, t) -- X(k' t) 
S(k) (51) 

Cv cos(ukt) exp(--Fk2t) = (t -- ~V ) exp[--(K/pCe)k2t] + ~ ; -  e 

where 

.: + 
p YcT  

Here, Cv and Ce are the specific heats; u is the velocity of sound; ~c is the 
thermal conductivity; and ~7 and ~ the coefficients of shear and bulk viscosity. 
Then 

K 

B2 ]--1 
q- Icgt ~ ~ q- sk~C q- krD (52) 

where the coefficients A, B, C, and D are functions of u 2, Cv/Cp, (K/pCp), 
and / ' .  In practice, we start with an approximate kinetic equation 
and try to calculate ~(k, s) in the limit s ~ 0, k ~ 0 with s/k constant. 
Because the kinetic equation is approximate, the hydrodynamic limit will 
not necessarily be (52) with the correct coefficients A, B, C, and D (see, for 
example, Ref. 6, Appendix B). We will take the hydrodynamic limit to be 
Eq. (52) but will not specify the coefficients A, B, C, and D which are asso- 
ciated with the higher-order terms in the numerator and denominator. 
From Eq. (47), we find that if the Enskog expression has a hydrodynamic 
limit of the form of Eq. (52), then so does the short-time result to leading order 
and 

F = F~ (53) 

so that 
~7 q- ~ = (~7 q- ~)e (54) 
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4.2. Short -T ime and Memory  Function Results 

For the memory function approach of Mazenko et al., (m we find from 
Eq. (43) for a system at density P0 

[1 - poCofk)] do(k, s) = r S p m) (55) 
1 -- spoCo(k ) do(k , s) 

where 
a0(k, s) = 20(k, s)/So(k) (56) 

Here 20(k, s) is the scattering function calculated from the memory function 
equation for a system at density P0 and So(k) is the expansion of S(k) up to 
linear order in the density P0, that is, 

So(k) = 1 4- poCo(k) (57) 

where Co(k ) is independent of the density and is defined in Eq. (12). The right 
side of Eq. (55) can be made equal to the right side of Eq. (45) by choosing 

Po = pg(a) (58) 

Then 

[1 -- poCo(k)] d0(k, s) (59) 
a(k ,  s)  = {1 - p C ( k )  + s [pC(k )  - -  OoCo(k)] do(k, s)} 

where d(k, s) and C(k) are at the density p defined by Eq. (58). 
As in Section 4.1, we can use Eq. (59) to relate the short-time sum rules 

and hydrodynamic limit for a system at density p to the memory function 
sum rules and hydrodynamic limit for a system at density P0. Because of 
the relationship between p and P0, Eq. (58), the results are not simple and 
so will not be written down. 

5. C O N C L U S I O N  

The scattering function 5(k, s) calculated from the short-time kinetic 
equation satisfies the first four sum rules, whereas d(k, s) derived from the 
Enskog equation only satisfies the first two sum rules. In the hydrodynamic 
limit, the scattering functions are the same to leading order. Therefore, we 
conclude that the short-time equation gives the better description of the 
scattering function throughout the (k, s) plane. This is confirmed for a one- 
dimensional system of hard rods, where the exact solution is known. (17) 
For  this system, the short-time equation gives the exact result (~8) for d(k, s) 
but the Enskog equation is exact only in the hydrodynamic limit. r 
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Since this paper  was written, G. F. Mazenko  has developed a Fully 
Renormalized Kinetic Theory  for  both the self and total distr ibution 
functions [Phys. Rev. A7:209 and 222 (1973) and preprint.] This theory is 
very powerful and to leading order  gives the same kinetic equations for  a 
system of  hard  spheres as those obtained f rom the short  time method  
discussed here. Thus the conclusions o f  this paper  also apply to the recent 
work  o f  Mazenko.  The kinetic equation for  the total distribution funct ion 
has also been derived recently by different methods by H. van Beijeren and 
M. H. Ernst  [Phys. Let ters  A43:367 (1973)] and H. H. U. Konijnendijk 
and J. M. J. van Leeuwen [Physiea 64:342 (1973)]. The conclusions o f  these 
authors  regarding the compar ison with the Enskog equation are the same 
as ours. 
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